Zinc immobilization by zerovalent iron: Surface chemistry and mineralogy of reaction products

Herbert, R.B
2003
Mineralogical Magazine
67
1285 – 1298
http://minmag.geoscienceworld.org/ 
http://dx.doi.org/10.1180/0026461036760165 


Abstract:

In bioreactor systems for the treatment of metal-contaminated water, pretreatment with zerovalent Fe can be exploited for oxygen consumption and H2 production. In this study, a column experiment is used to investigate the changes in surface chemistry and solid phase products that result from the reaction of a Zn-sulphate-lactate solution with zerovalent Fe filings. The results of this study indicate that zerovalent Fe is very effective in immobilizing dissolved Zn with a porewater residence time of 1.3 -3.1 days. A combination of X-ray diffractometry, X-ray photoelectron spectroscopy, and mineral equilibria calculations indicates that Zn precipitates as Zn(OH)2 and zincite at pH 9 -10. At pH 6, Zn primarily adsorbs to abundant ferric oxyhydroxides, although incorporation in green rust is also considered. During the course of the experiment, the surface mineralogy changes from magnetitelepidocrocite-goethite to green rust-akaganéite-goethite. The results suggest that the zerovalent Fe surface becomes passivated by a surface film of ferric oxyhydroxides, green rust and organic material, so that the rate of electron transfer and proton consuming reactions (i.e. oxygen consumption, H2 generation) declines, resulting in a decrease in solution pH.