Laboratory study of calcite–gypsum sludge–water interactions in a flooded tailings impoundment at the Kristineberg Zn–Cu mine, northern Sweden

Widerlund, A., Shcherbakova, E., Carlsson, E., Holmström, H., Öhlander, B.
2005
Applied Geochemistry
20
973-987
http://www.sciencedirect.com/science/journal/08832927 
http://dx.doi.org/10.1016/j.apgeochem.2004.12.003 


Abstract:

Due to liming of acid mine drainage, a calcite–gypsum sludge with high concentrations of Zn (24,400 ± 6900 μg g−1), Cu (2840 ± 680 μg g−1) and Cd (59 ± 20 μg g−1) has formed in a flooded tailings impoundment at the Kristineberg mine site. The potential metal release from the sludge during resuspension events and in a long-term perspective was investigated by performing a shake flask test and sequential extraction of the sludge. The sequentially extracted carbonate and oxide fractions together contained 2a7e97% of the total amount of Cd, Co, Cu, Ni, Pb and Zn in the sludge. The association of these metals with carbonates and oxides appears to result from sorption and/or coprecipitation reactions at the surfaces of calcite and Fe, Al and Mn oxyhydroxides forming in the impoundment. If stream water is diverted into the flooded impoundment, dissolution of calcite, gypsum and presumably also Al oxyhydroxides can be expected during resuspension events. In the shake flask test (performed at a pH of 7–9), remobilisation of Zn, Cu, Cd and Co from the sludge resulted in dissolved concentrations of these metals that were significantly lower than those predicted to result from dissolution of the carbonate fraction of the sludge. This may suggest that cationic Zn, Cu, Cd and Co remobilised from dissolving calcite, gypsum and Al oxyhydroxides were readsorbed onto Fe oxyhydroxides remaining stable under oxic conditions. In a long-term perspective ( 227310²a), 2a7e97% of the Cd, Co, Cu, Ni, Pb and Zn content of the sludge potentially is available for release by dissolution of calcite and reductive dissolution of Fe oxyhydroxides if the sludge is subject to a soil environment with lower dissolved Ca concentrations, pH and redox than in the impoundment.

Den här webbplatsen använder cookies för förbättra din användarupplevelse, för säkerhetsrutiner och för statistik. Genom att fortsätta använda webbplatsen samtycker du till att cookies används. Mer information. Ok!